Structural Systematics in the Binary System $\mathrm{Ta}_{2} \mathbf{O}_{5}-\mathbf{W O}_{3}$. II. The Structure of $\mathbf{T a}_{30} \mathbf{W}_{2} \mathbf{O}_{81}$

By N. C.Stephenson* and R.S. Roth
National Bureau of Standards, Washington, D.C. 20234, U.S.A.

(Received 9 March 1970 and in revised form 27 July 1970)

Abstract

The structure of the compound $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ has been determined in projection using single-crystal diffractometer X-ray data. The orthogonal unit cell has dimensions $a=6 \cdot 172, b=29 \cdot 226, c=3 \cdot 850 \AA$ and contains, on the average, one half of a formula unit. The structure of this unit cell represents the superposition of two structural blocks $\mathrm{M}_{16} \mathrm{O}_{40}$ and $\mathrm{M}_{16} \mathrm{O}_{42}$ (where M is a metal atom), which occur in the ratio $3: 1$. In both structural blocks the metal atoms are arranged in sheets and are surrounded by oxygen atoms forming either distorted octahedral or pentagonal bipyramidal coordination polyhedra. The difference in structure between the two blocks is that in $\mathrm{M}_{16} \mathrm{O}_{40}$ some metal atoms reduce their coordination numbers to minimize packing distortions. The resultant distortion planes are distributed so that three occur every two unit cell. The asymmetric structural unit was refined in two plane groups, $p m$ and $p g$, using full-matrix least-squares methods. The final R value is 0.077 and $p m$ was chosen as the correct plane group on the basis of noncrystallographic considerations.

Introduction

The compound $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ melts congruently at $1815^{\circ} \mathrm{C}$. Good single crystals can be prepared by heating a 13 mole per cent WO_{3} mixture at $1760^{\circ} \mathrm{C}$ in a sealed platinum tube for one hour and quench cooling. Under these conditions the mixture melts to the $15: 2$ composition and crystals grow under solid-liquid equilibrium conditions.

Preliminary X-ray powder diffraction work shows that the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ is based upon $8 \mathrm{UO}_{3^{-}}$ type subcells. This unit cell is the smallest encountered in the series $\mathrm{Ta}_{2} \mathrm{O}_{5}-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$.

Experimental

Crystals of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ are generally larger than those of $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$, and are colorless and near-spherical in shape. X-ray data were collected with $\mathrm{Cu} K \alpha$ radiation from a crystal of average radius $0.052 \mathrm{~mm}(\mu R=5.9)$. The crystal data are: $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}, M=7090 ; a=6 \cdot 172 \pm$ $0.001, b=29.226 \pm 0.001, \quad c=3.850 \pm 0.001 \AA ; \quad V_{o}=$ $694.5 \AA^{3}, Z=\frac{1}{2}, D_{c}=8.48 \mathrm{~g} . \mathrm{cm}^{-3}$. Unit-cell dimensions were obtained using a Philips powder diffractometer with $\mathrm{Cu} K \alpha$ radiation. Integrated intensities, $h k 0$, were obtained on a Siemens A.E.D. single-crystal diffractometer, as described in the previous paper, and data were processed to give the set of observed structure amplitudes listed in Table 2. Atomic scattering curves and computer programs used in this analysis were the same as those referred to in the previous paper (Stephenson \& Roth, 1971).

Determination of the structure

The intensity distributions on zero and upper-level Weissenberg photographs taken about c were visually

[^0]identical, indicating that atoms are predominantly located in the (001) planes. The Laue symmetry and systematic absences in spectra, i.e. $h 0 l$ data absent when $h \neq 2 n$ and $0 k l$ data absent when $k \neq 2 n$, indicated a primitive, orthorhombic space group, probably Pbam with atoms in position $4(g)$, or Pba 2 with atoms in position $4(c)$. However, it was not possible to interpret the Patterson synthesis using either of these space groups. It became clear that the apparent 'systematic' absences due to glide planes were probably accidentally absent and too weak to be observed. This situation may arise owing to the very small size of the crystal or, more likely, to a special arrangement of the heavy metal atoms such that they make only contributions to certain intensity data.

In view of thelarge number of alternative space groups the most plausible procedure was to solve the structure in projection, since there are but five rectangular primitive plane groups. The small length of the c axis and the (001) planar arrangement of atoms in this structure presented ideal conditions for this type of refinement. The plane groups $p g g$ and $p m m$ were disregarded since the ($h k 0$) Patterson function could not be interpreted using either of them, and an initial trial structure was conceived in the plane group pgm. This trial structure, derived from the Patterson function, was based on 8 UO_{3}-type subcells (Zachariasen, 1948) extending along the [010] direction, each C-centered subcell containing two metal atoms. Deviations of the metal atoms from their ideal subcell positions were determined from super position maps using the minimum function approach (Buerger, 1959). Least-squares refinement cycles, involving the positional and isotropic thermal parameters of the five metal atoms in the asymmetric unit, converged to a structure with a conventional R value of $0 \cdot 24$. This rather high value for R indicated that the symmetry requirements of either the mirror plane or the glide plane in the plane group pgm had to be relaxed. In keeping with the apparent orthorhombic nature of the unit cell, the plane group for the (001) projection is either $p m$ or $p g$.

The structure was refined in both plane groups. Oxygen atoms were located from difference Fourier syntheses and the positional and thermal atomic parameters were refined using the full-matrix least-squares program of Busing, Martin \& Levy (1962). The weighting scheme used has been described previously (Stephenson
\& Roth, 1971). The final agreement factors R_{1} for the observed $h k 0$ data for the plane groups $p m$ and $p g$ are 0.077 and 0.087 respectively.

The positional and thermal parameters for $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$, as well as corresponding standard deviations estimated from the inverse matrix, are given in Table 1. Table 2

Table 1. Positional and thermal parameters for the compound $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ refined in the plane groups pm and pg Standard deviations are given in brackets and the form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+2 \beta_{12} h k\right)\right]$. Atoms $\mathrm{O}(13)$ to $\mathrm{O}(20)$ and also $\mathrm{O}(23)$ have z parameters of $\frac{1}{2}$; the remaining atoms have z parameters of zero.

	x / a	y / b	$\begin{aligned} & \beta_{11} \times 10_{4} \times 1 \\ & \quad \text { or } B \end{aligned}$	$\beta_{22} \times 10_{5}$	$\beta_{12} \times 10_{5}$
M(1)	0.0538 (57)	0.0000	123 (57)	39 (15)	59 (43)
M(2)	Related to	by ($\bar{x}, \frac{1}{2}+y$)			
M(3)	0.9566 (59)	$0 \cdot 11837$ (62)	148 (56)	65 (17)	51 (56)
M(4)	0.9749 (23)	$0 \cdot 24269$ (47)	20 (26)	41 (11)	-94 (59)
M(5)	0.9772 (28)	$0 \cdot 37282$ (74)	74 (35)	77 (14)	23 (81)
M(6)	$0 \cdot 4980$ (45)	$0 \cdot 05699$ (80)	73 (17)	49 (9)	-54 (30)
M(7)	0.5047 (38)	$0 \cdot 18899$ (69)	58 (36)	66 (18)	114 (46)
M ${ }^{(8)}$	0.4213 (12)	$0 \cdot 31102$ (69)	43 (16)	32 (7)	-27 (61)
M(9)	0.4971 (47)	$0 \cdot 42788$ (67)	138 (45)	47 (2)	- 104 (49)
$\mathrm{O}(1)$	$0 \cdot 422$ (41)	0.0015 (95)	3.75 (5.18)		
$\mathrm{O}(2)$	$0 \cdot 219$ (18)	0.0687 (52)	0.37 (2.49)		
$\mathrm{O}(3)$	$0 \cdot 317$ (13)	$0 \cdot 2450$ (38)	-0.97 (1.32)		
$\mathrm{O}(4)$	$0 \cdot 074$ (12)	$0 \cdot 3149$ (46)	-0.63 (1.72)		
$\mathrm{O}(5)$	$0 \cdot 290$ (30)	$0 \cdot 1503$ (71)	3.44 (3.87)		
O(6)	0.219 (21)	0.4581 (54)	1.13 (2.60)		
$\mathrm{O}(7)$	$0 \cdot 823$ (21)	0.0536 (55)	-0.04 (1.96)		
$\mathrm{O}(8)$	0.614 (20)	0.1239 (61)	-0.10 (2.12)		
$\mathrm{O}(9)$	$0 \cdot 856$ (15)	$0 \cdot 1835$ (44)	-0.37 (2.09)		
$\mathrm{O}(10)$	$0 \cdot 683$ (19)	0.2667 (54)	-0.05 (2.30)		
O(11)	$0 \cdot 662$ (25)	0.3556 (59)	0.89 (3.02) *		
$\mathrm{O}(12)$	$0 \cdot 812$	0.4312	1.0		
$\mathrm{O}(13)$	0.060	0.0000	1.0		
$\mathrm{O}(14)$	0.962	$0 \cdot 1160$	1.0		
O(15)	0.978	0.2426	1.0		
O(16)	0.974	0.3729	1.0		
O(17)	0.502	0.0564	1.0		
O(18)	$0 \cdot 509$	0.1892	1.0		
O(19)	$0 \cdot 420$	0.3114	1.0		
$\mathrm{O}(20)$	0.491	0.4279	1.0		
O(21)	$0 \cdot 310$	0.3740	$1 \cdot 0 \dagger$		
$\mathrm{O}(22)$	Related to O(1) by ($\bar{x}, \frac{1}{2}+y$)				
$\mathrm{O}(23)$	Related to O(13) by ($\bar{x}, \frac{1}{2}+y$)				
Plane group pm					
	x / a	y / b	$\begin{gathered} \beta_{11} \times 10_{4} \\ \text { or } B \end{gathered}$	$\beta_{22} \times 10_{5}$	$\beta_{12} \times 10_{5}$
M(1)	0.0784	$0 \cdot 0000$	54 (34)	32 (15)	00
M(2)	0.9241 (18)	$0 \cdot 5000$	10 (28)	47 (13)	00
M(3)	0.9907 (39)	$0 \cdot 11934$ (60)	45 (25)	70 (13)	22 (34)
M(4)	0.0061 (54)	$0 \cdot 24951$ (62)	65 (18)	45 (7)	- 17 (17)
M ${ }^{(5)}$	0.9911 (36)	0.37961 (48)	162 (35)	18 (8)	51 (38)
M(6)	0.5198 (48)	0.06571 (66)	95 (41)	73 (15)	-69 (36)
M (7)	0.5519 (55)	$0 \cdot 19105$ (64)	235 (52)	43 (11)	23 (68)
$\mathrm{M}(8)$	0.4543 (46)	$0 \cdot 30919$ (53)	61 (25)	52 (10)	22 (48)
$\mathrm{M}(9)$	0.4697 (51)	$0 \cdot 43500$ (49)	20 (43)	38 (10)	-50(42)
$\mathrm{O}(1)$	0.438 (32)	$0 \cdot 0000$	-0.99 (2.99)		
$\mathrm{O}(2)$	0.179 (15)	0.0661 (52)	-1.48 (1.91)		
$\mathrm{O}(3)$	$0 \cdot 298$ (30)	$0 \cdot 2430$ (111)	0.93 (5.5)		
O(4)	$0 \cdot 125$ (22)	$0 \cdot 3126$ (44)	$0 \cdot 31$ (2.14)		
$\mathrm{O}(5)$	0.256 (39)	$0 \cdot 1535$ (125)	2.69 (4.31)		
O (6)	$0 \cdot 164$ (47)	$0 \cdot 4585$ (121)	2.30 (3.61)		
$\mathrm{O}(7)$	$0 \cdot 822$ (19)	0.0460 (56)	0.01 (2.05)		
$\mathrm{O}(8)$	$0 \cdot 639$ (21)	$0 \cdot 1278$ (43)	0.41 (2.41)		
$\mathrm{O}(9)$	0.889 (19)	$0 \cdot 1860$ (47)	2.00 (2.09)		
$\mathrm{O}(10)$	0.695 (23)	$0 \cdot 2610$ (77)	1.12 (3.48)		
$\mathrm{O}(1)$	$0 \cdot 708$ (29)	$0 \cdot 3467$ (87)	$1.24(3 \cdot 50)$ *		
$\mathrm{O}(12)$	0.789 (26)	0.4401 (64)	0.99 (3.79)		
$\mathrm{O}(13)$	0.078	$0 \cdot 0000$	$1 \cdot 0$		

Table 1 (cont.)

	x / a	y / b	$\begin{aligned} & \beta_{11} \times 10_{4} \\ & \text { or } \beta \end{aligned}$
$\mathrm{O}(14)$	0.981	$0 \cdot 1130$	1.0
O(15)	0.996	0.2480	1.0
O(16)	0.020	$0 \cdot 3860$	1.0
O(17)	$0 \cdot 518$	$0 \cdot 0660$	1.0
O(18)	$0 \cdot 547$	0. 1910	1.0
O(19)	$0 \cdot 428$	0.3080	$1 \cdot 0$
O(20)	$0 \cdot 480$	0.4300	1.0
$\mathrm{O}(21)$	0.312	0.3750	$1.0 \dagger$
$\mathrm{O}(22)$	0.579 (28)	$0 \cdot 5000$	-1.05 (3.35)
$\mathrm{O}(23)$	0.922	$0 \cdot 500$	1.0
* Unresolved doublet. \dagger Population parameter is 0.25 .			

Table 2. Observed and calculated structure factors
Unobserved data are marked with L.

lists observed and calculated structure amplitudes. Bond distances and angles, together with their estimated standard deviations (e.s.d.'s), are given in Table 3.

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for the coordination polyhedra

Plane group pm. Prime indicates atoms related by x, \bar{y}, z. Second number in parentheses denotes frequency of occurrence.

M(1) Pentagonal bipyramid

$\mathrm{M}(1)-\mathrm{O}(1)$	$2.22(19)(1)$
$-\mathrm{O}(2)$	$2.03(15)(2)$
$-\mathrm{O}(7)$	$2.08(14)(2)$
$-\mathrm{O}(13)$	$1.93(20)(2)$

Table 3 (cont.)

$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 51(18)(2)$
$\mathrm{O}(2)-\mathrm{O}(7)$	$2 \cdot 28(16)(2)$
$\mathrm{O}(7)-\mathrm{O}\left(7^{\prime}\right)$	$2 \cdot 69(23)(1)$
$\mathrm{O}(13)-\mathrm{O}(1)$	$2 \cdot 94(24)(2)$
$-\mathrm{O}(2)$	$2 \cdot 80(24)(4)$
$-\mathrm{O}(7)$	$2.83(22)(4)$
$\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(7)$	$115(8)(2)$
$\mathrm{O}(2)-\mathrm{O}(7)-\mathrm{O}\left(7^{\prime}\right)$	$105(8)(2)$
$\mathrm{O}(2)-\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	$101(8)(1)$

M(2) Pentagonal bipyramid

$\mathrm{M}(2)-\mathrm{O}(12)$	$1 \cdot 94(18)(2)$
$-\mathrm{O}(22)$	$2 \cdot 14(17)(1)$
$-\mathrm{O}(6)$	$1 \cdot 91(32)(2)$

Table 3 (cont.)

$\mathrm{O}(2)-\mathrm{O}(23)$	$1 \cdot 93(30)(2)$
$\mathrm{O}(6)--\mathrm{O}(12)$	$2 \cdot 38(34)(2)$
$\mathrm{O}(12)-\mathrm{O}(22)$	$2 \cdot 30(20)(2)$
$\mathrm{O}(6)-\mathrm{O}\left(6^{\prime}\right)$	$2 \cdot 43(50)(1)$
$\mathrm{O}(23)-\mathrm{O}(22)$	$2 \cdot 87(22)(2)$
$-\mathrm{O}(12)$	$2 \cdot 73(15)(4)$
$-\mathrm{O}(6)$	$2 \cdot 72(26)(4)$
$\mathrm{O}(12)-\mathrm{O}(22)-\mathrm{O}\left(12^{\prime}\right)$	$107(10)(1)$
$\mathrm{O}(22)-\mathrm{O}(12)-\mathrm{O}(6)$	$111(12)(2)$

M(3) Pentagonal bipyramid
$\mathrm{M}(3)-\mathrm{O}(2)$
$-\mathrm{O}(5)$
$-\mathrm{O}(9)$
$-\mathrm{O}(8)$
$-\mathrm{O}(7)$
$-\mathrm{O}(14)$
$\mathrm{O}(2)-\mathrm{O}(5)$
$\mathrm{O}(5)-\mathrm{O}(9)$
$\mathrm{O}(9)-\mathrm{O}(8)$
$\mathrm{O}(8)-\mathrm{O}(7)$
$\mathrm{O}(7)-\mathrm{O}(2)$
$\mathrm{O}(14)-\mathrm{O}(2)$
$\mathrm{O}(14)-\mathrm{O}(5)$
$-\mathrm{O}(9)$
$-\mathrm{O}(8)$
$\mathrm{O}(7)$
$\mathrm{O}(2)-\mathrm{O}(5)-\mathrm{O}(9)$
$\mathrm{O}(5)-\mathrm{O}(9)-\mathrm{O}(8)$
$\mathrm{O}(9)-\mathrm{O}(8)-\mathrm{O}(7)$
$\mathrm{O}(8)--\mathrm{O}(7)--\mathrm{O}(2)$
$\mathrm{O}(7)-\mathrm{O}(2)--\mathrm{O}(5)$

M(4) Octahedra

$\mathrm{M}(4)-\mathrm{O}(3)$	$1 \cdot 89(19)(1)$
$-\mathrm{O}(4)$	$1 \cdot 99(13)(1)$
$-\mathrm{O}(9)$	$1 \cdot 99(14)(1)$
$-\mathrm{O}(10)$	$1 \cdot 95(15)(1)$
$\mathrm{O}(3)-\mathrm{O}(4)$	$2 \cdot 30(33)(1)$
$\mathrm{O}(4)-\mathrm{O}(10)$	$3.05(21)(1)$
$\mathrm{O}(10)-\mathrm{O}(9)$	$2 \cdot 50(25)(1)$
$\mathrm{O}(9)-\mathrm{O}(3)$	$3.02(27)(1)$
$\mathrm{O}(15)-\mathrm{O}(3)$	$2 \cdot 68(22)(2)$
$-\mathrm{O}(4)$	$2 \cdot 81(23)(2)$
$-\mathrm{O}(9)$	$2 \cdot 73(22)(2)$
$-\mathrm{O}(10)$	$2 \cdot 70(20)(2)$
$\mathrm{O}(3)-\mathrm{O}(4)-\mathrm{O}(10)$	$88(9)$
$\mathrm{O}(4)-\mathrm{O}(10)-\mathrm{O}(9)$	$91(6)$
$\mathrm{O}(10)-\mathrm{O}(9)-\mathrm{O}(3)$	$85(7)$
$\mathrm{O}(9)-\mathrm{O}(3)-\mathrm{O}(4)$	$96(7)$

Table 3 (cont.)

$\mathrm{O}(6)-\mathrm{O}(21)-\mathrm{O}(4)$	$127(13)$
$\mathrm{O}(21)-\mathrm{O}(4)-\mathrm{O}(11)$	$101(10)$
$\mathrm{M}(5)$ Distorted octahedron	
$\mathrm{M}(5)-\mathrm{O}(4)$	$2.13(13)(1)$
$-\mathrm{O}(11)$	$2.00(20)(1)$
$-\mathrm{O}(12)$	$2.16(18)(1)$
$-\mathrm{O}(6)$	$2.54(34)(1)$
$-\mathrm{O}(16)$	$1.94(20)(2)$
$\mathrm{O}(4)-\mathrm{O}(11)$	$2.76(23)(1)$
$\mathrm{O}(11)-\mathrm{O}(12)$	$2.78(31)(1)$
$\mathrm{O}(12)-\mathrm{O}(6)$	$2.38(33)(1)$
$\mathrm{O}(6)-\mathrm{O}(4)$	$4.27(38)(1)$
$\mathrm{O}(16)-\mathrm{O}(4)$	$2.95(24)(2)$
$-\mathrm{O}(11)$	$2.96(25)(2)$
$-\mathrm{O}(12)$	$2.87(24)(2)$
$-\mathrm{O}(6)$	$3.00(34)(2)$
$\mathrm{O}(4)-\mathrm{O}(11)-\mathrm{O}(12)$	$101(8)$
$\mathrm{O}(11)-\mathrm{O}(12)-\mathrm{O}(6)$	$113(11)$
$\mathrm{O}(12)-\mathrm{O}(6)-\mathrm{O}(4)$	$77(8)$

M(6) Octahedron	
$\mathrm{M}(6)-\mathrm{O}(1)$	1.99 (05) (1)
-O(2)	$2 \cdot 10$ (10) (1)
-O(7)	$1 \cdot 95$ (13) (1)
-O(8)	1.96 (13) (1)
-O(17)	1.93 (20) (2)
$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 51$ (18) (1)
$\mathrm{O}(2)-\mathrm{O}(8)$	$3 \cdot 36$ (17) (1)
$\mathrm{O}(8)-\mathrm{O}(7)$	$2 \cdot 64$ (20) (1)
$\mathrm{O}(7)-\mathrm{O}(1)$	2.73 (22) (1)
$\mathrm{O}(17)-\mathrm{O}(1)$	2.77 (21) (2)
-O(2)	$2 \cdot 84$ (19) (2)
-O(8)	2.74 (22) (2)
-O(7)	2.75 (20) (2)
$\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(8)$	83 (5)
$\mathrm{O}(2)-\mathrm{O}(8)-\mathrm{O}(7)$	83 (5)
$\mathrm{O}(8)-\mathrm{O}(7)-\mathrm{O}(1)$	94 (5)
$\mathrm{O}(7)--\mathrm{O}(1)--\mathrm{O}(2)$	100 (4)

M(7) Pentagonal bipyramid	
M(7)-O(3)	$2 \cdot 18(26)(1)$
$-\mathrm{O}(5)$	$2 \cdot 13(28)(1)$
$-\mathrm{O}(8)$	$1 \cdot 93(13)(1)$
$-\mathrm{O}(9)$	$2 \cdot 09(12)(1)$
$-\mathrm{O}(10)$	$2 \cdot 23(22)(1)$
$-\mathrm{O}(18)$	$1 \cdot 93(20)(2)$
$\mathrm{O}(3)-\mathrm{O}(5)$	$2 \cdot 63(49)(1)$
$\mathrm{O}(5)-\mathrm{O}(8)$	$2 \cdot 48(29)(1)$
$\mathrm{O}(8)-\mathrm{O}(9)$	$2 \cdot 30(18)(1)$
$\mathrm{O}(9)-\mathrm{O}(10)$	$2 \cdot 50(25)(1)$
$\mathrm{O}(10)-\mathrm{O}(3)$	$2 \cdot 51(24)(1)$
$\mathrm{O}(18)-\mathrm{O}(3)$	$2 \cdot 90(28)(2)$
$-\mathrm{O}(5)$	$2 \cdot 86(28)(2)$
$-\mathrm{O}(8)$	$2 \cdot 72(22)(2)$
$-\mathrm{O}(9)$	$2 \cdot 85(20)(2)$
$-\mathrm{O}(10)$	$2 \cdot 95(27)(2)$
$\mathrm{O}(3)-\mathrm{O}(5)-\mathrm{O}(8)$	$102(11)$
$\mathrm{O}(5)-\mathrm{O}(8)-\mathrm{O}(9)$	$114(10)$
$\mathrm{O}(8)-\mathrm{O}(9)-\mathrm{O}(10)$	$109(7)$
$\mathrm{O}(9)-\mathrm{O}(10)-\mathrm{O}(3)$	$107(11)$
$\mathrm{O}(10)-\mathrm{O}(3)-\mathrm{O}(5)$	$108(12)$

$\mathrm{M}(8)$ Pentagonal bipyramid	
$\mathrm{M}(8)-\mathrm{O}(3)$	$2 \cdot 16(30)(1)$
$-\mathrm{O}(4)$	$2.04(14)(1)$
$-\mathrm{O}(21)$	$2 \cdot 11(29)(1)$
$-\mathrm{O}(11)$	$1.91(21)(1)$
$-\mathrm{O}(10)$	$2.05(19)(1)$
$-\mathrm{O}(19)$	$1.93(20)(2)$
$\mathrm{O}(3)-\mathrm{O}(4)$	$2 \cdot 30(33)(1)$

Table 3 (cont.)

$\mathrm{O}(4)-\mathrm{O}(21)$	$2 \cdot 16(31)(1)$
$\mathrm{O}(21)-\mathrm{O}(11)$	$2 \cdot 58(31)(1)$
$\mathrm{O}(11)-\mathrm{O}(10)$	$2 \cdot 51(34)(1)$
$\mathrm{O}(10)-\mathrm{O}(3)$	$2 \cdot 51(24)(1)$
$\mathrm{O}(19)-\mathrm{O}(3)$	$2 \cdot 82(31)(2)$
$-\mathrm{O}(4)$	$2 \cdot 69(20)(2)$
$-\mathrm{O}(21)$	$2 \cdot 84(30)(2)$
$-\mathrm{O}(11)$	$2 \cdot 82(24)(2)$
$-\mathrm{O}(10)$	$2.88(24)(2)$
$\mathrm{O}(3)-\mathrm{O}(4)-\mathrm{O}(21)$	$120(11)$
$\mathrm{O}(4)-\mathrm{O}(21)-\mathrm{O}(11)$	$104(13)$
$\mathrm{O}(21)-\mathrm{O}(11)-\mathrm{O}(10)$	$107(10)$
$\mathrm{O}(11)-\mathrm{O}(10)-\mathrm{O}(3)$	$104(11)$
$\mathrm{O}(10)-\mathrm{O}(3)-\mathrm{O}(4)$	$106(13)$

M(8) Distorted octahedron
$\mathrm{M}(8)-\mathrm{O}(3)$
$-\mathrm{O}(4)$
$-\mathrm{O}(10)$
$-\mathrm{O}(11)$
$-\mathrm{O}(19)$
$\mathrm{O}(3)-\mathrm{O}(4)$
$\mathrm{O}(4)-\mathrm{O}(11)$
$\mathrm{O}(11)-\mathrm{O}(10)$
$\mathrm{O}(10)-\mathrm{O}(3)$
$\mathrm{O}(19)-\mathrm{O}(3)$
$-\mathrm{O}(4)$
$-\mathrm{O}(11)$
$\mathrm{O}(10)$
$\mathrm{O}(3)-\mathrm{O}(4)-\mathrm{O}(11)$
$\mathrm{O}(4)-\mathrm{O}(11)-\mathrm{O}(10)$
$\mathrm{O}(11)-\mathrm{O}(10)-\mathrm{O}(3)$
$\mathrm{O}(10)-\mathrm{O}(3)-\mathrm{O}(4)$

M(9) Pentagonal bipyramid

$\mathrm{M}(9)-\mathrm{O}(6)$	$2 \cdot 01$ (30) (1)
-O(22)	$2 \cdot 15$ (06) (1)
-O(12)	1.98 (16) (1)
-O(11)	$2 \cdot 97$ (24) (1)
-O(21)	2.01 (28) (1)
-O(20)	1.93 (20) (2)
$\mathrm{O}(6)-\mathrm{O}(22)$	2.78 (34) (1)
$\mathrm{O}(22)-\mathrm{O}(12)$	$2 \cdot 10$ (21) (1)
$\mathrm{O}(12)-\mathrm{O}(11)$	2.78 (31) (1)
$\mathrm{O}(11)-\mathrm{O}(21)$	$2 \cdot 58$ (31) (1)
$\mathrm{O}(21)-\mathrm{O}(6)$	$2 \cdot 61$ (45) (1)
$\mathrm{O}(20)-\mathrm{O}(11)$	3.40 (30) (2)
-O(12)	2.73 (21) (2)
-O(21)	2.71 (28) (2)
-O(6)	$2 \cdot 86$ (29) (2)
-O(22)	2.98 (22) (2)
$\mathrm{O}(6)-\mathrm{O}(22)-\mathrm{O}(12)$	96 (8)
$\mathrm{O}(22)-\mathrm{O}(12)-\mathrm{O}(11)$	135 (9)
$\mathrm{O}(12)-\mathrm{O}(11)-\mathrm{O}(21)$	82 (10)
$\mathrm{O}(11)-\mathrm{O}(21)-\mathrm{O}(6)$	129 (4)
$\mathrm{O}(21)-\mathrm{O}(6)-\mathrm{O}(22)$	92 (11)
M(9) Distorted octahedron	
$\mathrm{M}(9)-\mathrm{O}(6)$	$2 \cdot 01$ (30) (1)
-O(22)	$2 \cdot 15$ (06) (1)
-O(12)	1.98 (16) (1)
-O(11)	$2 \cdot 97$ (24) (1)
-O(20)	1.93 (20) (2)
$\mathrm{O}(6)-\mathrm{O}(22)$	$2 \cdot 78$ (34) (1)
$\mathrm{O}(22)-\mathrm{O}(12)$	$2 \cdot 10$ (21) (1)
$\mathrm{O}(12)-\mathrm{O}(11)$	$2 \cdot 78$ (31) (1)
$\mathrm{O}(11)-\mathrm{O}(6)$	$4 \cdot 68$ (39) (1)
$\mathrm{O}(20)-\mathrm{O}(11)$	$3 \cdot 40$ (30) (2)
-O(6)	$2 \cdot 86$ (29) (2)
-O(22)	$2 \cdot 98$ (22) (2)
-O(12)	2.73 (21) (2)

Table 3 (cont.)

$\mathrm{O}(12)-\mathrm{O}(11)-\mathrm{O}(6)$	$56(6)$
$\mathrm{O}(11)-\mathrm{O}(6)-\mathrm{O}(22)$	$72(7)$
$\mathrm{O}(8)-\mathrm{O}(22)-\mathrm{O}(12)$	$96(8)$
$\mathrm{O}(22)-\mathrm{O}(12)-\mathrm{O}(11)$	$135(9)$

Description of the structure

The structure of the asymmetric unit is essentially the same for both refinements; the overall structure depends on the way in which the asymmetric unit propagates itself and is therefore different for each of the plane groups $p m$ and $p g$. The structure of the asymmetric unit is described first.

Metal atoms have a close-packed hexagonal arrangement within sheets separated by $3.85 \AA$. Oxygen atoms complete a coordination polyhedron around each metal atom in the form of either a distorted pentagonal bipyramid or octahedron. These polyhedra are joined by edge-sharing within the (001) planes. Extension of the structure along [001] occurs by cornersharing.

There are 16 metal atoms and $40 \frac{1}{2}$ oxygen atoms in the unit cell derived from the X-ray data. The ideal structure has 42 oxygen atoms in the unit cell and can be generated from a chain of 6 edge-sharing pentagons which is regularly folded as shown in Fig. 1. Each folded chain is fused to an identical one by cornersharing. The folding process introduces anionic packing distortions at the folding planes (Roth \& Stephenson, 1969), and the real structure differs from the ideal structure by the manner in which the pentagonal bipyramids lying on, or near, the folding planes accommodate the distortions imposed upon them by the folding process.

Fig. 1. The ideal structure of the compound $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ derived \checkmark from fused chains of regular pentagons Each straight portion of the chain is six pentagons long and the (010) and (020) planes are the folding planes. b^{\prime} is the subcell parameter.

This process can involve a reduction in the coordination number of some metal atoms and in the previous paper such a distortion plane was readily located by a splitting of one of the oxygen peaks. No such splitting occurs in the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ but one oxygen peak, $\mathrm{O}(21)$, is very much lower in peak height than any of the remaining oxygen peaks. In either plane group $p g$ or $p m$ the general position is twofold and therefore the $40 \frac{1}{2}$ oxygen atoms will completely fill 20 general positions together with one half an oxygen atom distributed over one twofold position. This latter situation corresponds to the observed lower oxygen peak height, which is equivalent to $\frac{1}{4}$ oxygen atom.

Each distortion plane in the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ is therefore associated with $\mathrm{O}(21)$ and there are $1 \frac{1}{2}$ distortion planes per unit cell, or three distortion planes in two unit cells i.e. distributed over a distance of

Fig. 2. The locations of the mirror (M) and glide planes of the ideal 8 subcell structure and the distortion planes (d) of the real structure. The distortion plane da can propagate to $d m$ or $d g$ by a mirror or glide plane respectively. The distortion plane through $\mathrm{O}(12)$, shown arrowed, cannot propagate by mirroring. Polyhedra are marked according to the number (Table 1) of the metal atom.
$58 \cdot 452 \AA$ along the [010] direction. This means that the $\mathrm{O}(21)$ position which occurs four times in two unit cells of the ideal structure is only occupied once in two unit cells of the real structure. Metal atoms M(8), M(9) and $\mathrm{M}(5)$ therefore have distorted, pentagonal bipyramidal coordination polyhedra in the absence of a distortion plane but in 75% of the structure these metal atoms have distorted octahedral coordination polyhedra. The atom $\mathrm{O}(21)$ was therefore given a population parameter of 0.25 in all crystallographic calculations.

One other consequence of the dual coordination features of atoms $M(8), M(9)$ and $M(5)$ is the shape of the oxygen peak $\mathrm{O}(11)$ which is noticeably elongated in the Fourier syntheses. Probably, $\mathrm{O}(11)$ occupies slightly different positions depending on whether it belongs to the pentagonal bipyramidal or octahedral coordination polyhedra.

Discussion

The plane group symmetry of the $8 \mathrm{UO}_{3}$-type subcell structure, shown in Fig. 1, is pgm. It has been shown that the structure of the compound $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ differs slightly from this ideal structure because of the packing distortions occurring in the ideal model. The plane group symmetry of the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ is either $p m$ or $p g$ and, although the structure of the asymmetric unit (viz. $a \times b / 2 \times c$) is not greatly dependent on the plane group, the manner in which it repeats itself does lead to a different overall structure for each plane group. Particularly dependent on the choice of plane group is the distribution of distortion planes along the b axis. The distortion plane incorporating $\mathrm{O}(21)$ of the asymmetric unit is shown in Fig. 2 by da, and the distortion

Table 4. Correlation coefficients, $\varrho_{i j}$, for metal-metal positional parameter interactions using (a) plane group pm (b) plane group pg $x_{i}-x_{j}$ type interactions are shown below the $\varrho_{i i}$ diagonal while $y_{i}-y_{j}$ type interactions are found above this diagonal.
(a)
(a)

	1
1	$1 \cdot 0$
2	-
3	-
4	-
5	-
6	-
7	-
8	-
9	

2
-
1.0
0.41
0.55
0.46
0.44
0.29
0.35
0.41
3
-
1.0
0.77
0.89
0.73
0.56
0.62
0.76
4
-
-
-0.28
1.0
0.75
0.60
0.54
0.59
0.67
5
-
0.80
-0.27
1.0
0.62
0.48
0.56
0.65
6
-
0.08
0.04
-0.07
1.0
0.71
0.81
0.96

7		9
-	-	-
0.11	0.14	0.14
-0.22	-0.28	0.02
-0.02	0.09	0.01
-0.35	-0.25	0.81
1.0	0.80	-0.43
0.89	1.0	-0.24
0.67	0.80	1.0

(b)

		1
1	1.0	-
2		1.0
3	0.88	-
4	0.07	-
5	0.07	-
6	0.40	-
7	0.68	-
8	0.39	-
9	-0.63	-

Fig. 3. A projection of the real structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ onto the (001) plane. Distortion planes have been propagated according to the plane group pm. Black dots represent metal atoms and shaded areas oxygen coordination polyhedra.
planes related to $d a$ by a mirror plane and by a glide plane are identified in Fig. 2 by $d m$ and $d g$, respectively. Further repeat positions along [010] are determined by ab translation vector and the frequency of the distortion planes, which is determined by the molecular formula, is such that 3 distortion planes occur every $2 b=58.452$ \AA. If the plane group of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ is $p m$ the distortion planes occur in pairs (e.g. $d a$ and $d m$ in Fig. 2), whereas if the plane group is $p g$ the distortion planes are distributed regularly along [010] with an average separation distance of $b / 2$, e.g. $d a$ and $d g$ in Fig. 2.

It is not possible to choose between $p m$ and $p g$ based on the plausibility of bond lengths and angles for the structure refined in each plane group. Standard deviations are so large as to make quantitative comparisons impossible. The reason for the large standard deviations is again the extensive interdependence of positional parameters particularly $x-x$ and $y-y$ interactions. The correlation coefficients for these types of interactions were obtained from the inverse matrix calculated by Busing, Martin \& Levy's (1962) ORFLS program and are listed in Table 4 for the metal atoms of the asymmetric unit. The values are high, a consequence of the small perturbation of the real structure from ideal pgm symmetry. However there are 13 values of $\varrho_{i j}$ greater than 0.70 for the $p m$ refinement compared with 3 values of $\varrho_{i j}$ greater than 0.70 for the $p g$ refinement and it would seem that a more satisfactory refinement, with lower standard deviations in atomic parameters, is to be obtained in the plane group $p g$.

To reach a decision on the correct space group of potassium hydrogen malonate, Parthasarathy, Sime \& Speakman (1969) found it necessary to have recourse to noncrystallographic considerations. In the present in-
stance such considerations favor the plane group $p m$. Consider the situation where the distortion plane $d a$ (Fig. 2) is propagated along the [010] direction by a glide plane so that no association of distortion planes occurs. It would be reasonable to expect that the distortion plane would be located as close as possible to the region of maximum distortion, as was the case in the structure of $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$. This position is shown in Fig. 2 by arrows and involves the atom $\mathrm{O}(12)$. A distortion plane in this position could not be propagated along the [010] direction by mirroring since it is too close to the (020) mirror plane. A retraction from this mirror plane to the position that it does occupy, i.e. $\mathrm{O}(21)$, permits the possibility of propagation by mirroring and, although indirect, may be the evidence needed to decide between $p m$ and $p g$.
Fig. 3 represents a projection of the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ onto the (001) plane. The distortion planes have been propagated according to the plane group pm.

References

Buerger, M. J. (1959). Vector Space and its Application in Crystal Structure Investigation. New York: John Wiley. Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program, Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Parthasarathy, R., Sime, J. G. \& Speakman, J. C. (1969). Acta Cryst. B25, 1201.
Roth, R. S. \& Stephenson, N. C. (1969). The Chemistry of Extended Defects in Non-Metallic Solids, Amsterdam: North Holland.
Stephenson, N. C. \& Roth, R. S. (1971). Acta Cryst. B27, 1010.

Zachariasen, W. H. (1948). Acta Cryst. 1, 265.

[^0]: * Permanent address: School of Chemistry, University of New South Wales, Sydney, Australia.

